There may be some problems in the Artificial Intelligence model, there are no algorithms - Indiarox
  • Home
  • inspiring quotes
  • There may be some problems in the Artificial Intelligence model, there are no algorithms
inspiring quotes

There may be some problems in the Artificial Intelligence model, there are no algorithms

opinion

Not all the concerns about AI models are unfounded. But most of the problem lies with the human element in the entire process: the selection of training and testing data.

As machine learning — fashionably branded as artificial intelligence (AI) — continues to flourish, a veritable cottage industry of activists has accused it of reflecting and perpetuating pretty much everything that ails the world: racial inequity, sexism, financial exploitation, big-business connivance, you name it. To be fair, new technologies must be questioned, probed, and “problematized” (to use one of their favourite buzzwords) — and it is indeed a democratic prerogative. That said, there seems to be persistent confusion around the very basics of the discipline.

No other example demonstrates this best than the conflation of objectives, algorithms and models. Simplifying a little, the life cycle in creating a machine learning model from scratch is the following. The first step is to set a high-level practical objective: What the model is supposed to do, such as recognising images or speech. This objective is then translated into a mathematical problem amenable to computing. This computational problem, in turn, is solved using one or more machine learning algorithms: specific mathematical procedures that perform numerical tasks in efficient ways. Up to this stage, no data is involved. The algorithms, by themselves, do not contain any.

The machine learning algorithms are then “trained” on a data sample selected at human discretion from a data pool. In simple terms, this means that the sample data is fed into the algorithms to obtain patterns. Whether these patterns are useful or not (or, often, whether they have predictive value) is verified using “testing” data — a data set different from the training sample, though selected from the same data pool. A machine learning model is born: The algorithm, along with the training and testing data sets, which meets the set practical objective. The model is then let loose on the world. (In a few cases, as the model interacts with this much larger universe of data, it fine-tunes itself and evolves; the model’s interaction with users helps it expand its training data set.) From predictive financial analytics to more glamorous cat-recognising systems, most current AI models follow this life cycle.

Read More:-Xiaomi India to launch new products today, Mi Home Security Camera can be

To reiterate, the algorithms themselves do not contain data; the model does. Algorithms are simply mathematical recipes and, as such, go way before computers. When you are dividing two numbers by the long division method, you are implementing an algorithm. Simpler still, when you are adding two, you are also implementing another. A commonly used algorithm to classify images — Support Vector Machines — is a simple way to solve a geometrical problem, invented in the early 1960s. Despite the bombastic moniker, it is not a machine, merely a recipe. Another with an equally impressive name, the Perceptron, also has a dry mathematical statement despite sounding like something out of a science fiction film.

Related posts

Trump admin reiterates support for India’s role in reformed UNSC

indiarox

Sui Dhaga movie review and rating by audience: Live updates

indiarox

50 Motivational Quotes That Will Inspire You to Succeed

spyrox

Leave a Comment